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Abstract We present a version of the classical geometry of the Gaussian multivari-
ate model that has some advantage in the treatment of operations on the tangent
bundle on the model. Applications and generalizations are briefly discussed.
Abstract Presentiamo una versione della classica geometria differenziale del mo-
dello gaussiano multivariato che presenta qualche vantaggio quando si considerano
operazioni sul fibrato tangente. Discutiamo brevemente applicazioni e generaliz-
zazioni.
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1 Introduction

The geometry of the multivariate Gaussian model N(µ,Σ) has been studied in detail
by Skovgaard in [7], where normal densities are parameterized by the mean param-
eter µ and the covariance matrix Σ , and the relevant Riemannian geometry is based
on an explicit form of the Fisher information. The study of statistical models with
tools from differential geometry is frequently called Information Geometry, a name
popularized by Amari, see [1]. The main contribution of Amari is the identification
of a dually flat connection structure that largely extends the original Riemannian
approach. In this paper we present this theory in the framework we reviewed in [5].
It is a non parametric approach where a statistical model is presented in exponen-
tial form M =

{
exp(U−Kp(U)) · p

}
, while the tangent bundle is given a concrete

form, that is the set of couples (p,u) with p ∈M and u a Fisher score (directional
derivative of the log-likelihood) at p. We believe that this approach is conceptually
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better that the standard abstract parametric presentation because: 1. it allows for non
parametric models; 2. presents the tangent bundle as a natural statistical object i.e.
the Fisher scores and presents vector fields as statistical pivotal quantities; 3. gives
the Amari’s dual parallel transports a simple concrete form; 4. it is useful even if the
model has actually a finite number of parameters, as it is the case for the multivari-
ate Gaussian model, because connects clearly the geometry on the parameters space
with the geometry on the sample space.

In Sec. 2 we discuss the Gaussian model in the form exp(U−Kp(U)) · p, where p
is the standard Gaussian density and the second order polynomial U is a linear com-
bination of Hermite polynomials. If Z∼ ν1 =N(0,1) and f ,g real smooth functions,
then E [d f (Z)g(Z)] = E [ f (Z)δg(Z)] where d f (x) = f ′(x) and δg = xg(x)− g′(x)
is the Stein operator. It follows that each Hn is a monic polynomial of degree n,
dHn = nHn−1, E [Hn(Z)Hm(Z)] = 0 for n 6= m, E

[
Hn(Z)2

]
= n!. In dimension d,

for each multi-index α , we define Hα((x)) = ∏
d
i=1 Hαi(xi) to get an orthogonal ba-

sis of L2(νd), νd = Nd(0, Id). If we define dα = ∏
d
i=1 dαi

xi , δ α = ∏
d
i=1 δ

αi
xi , we have

for functions f ,g : Rd → R and Z ∼ νd that E [dα f (Z)g(Z)] = E [ f (Z)δ α g(Z)].
Sometimes it is convenient to use H̃α = Hα/α!.

Second order geometrical object such as Levi-Civita connection and curvature
are not discussed in this paper. We restrict , in Sec. 3, to a short presentation of our
formalism to model based optimization.

2 Gaussian model in the Hermite basis

Given a vector of means µ ∈Rm and and a full-rank covariance matrix Σ ∈ S+m , with
Σ = [σi j] and Σ−1 = [σ i j], the exponent−(1/2)(x−µ)tΣ−1(x−µ) in the Gaussian
density N(µ,Σ) can be written

−1
2

(
µ

t
Σ
−1

µ +Tr
(
Σ
−1)+2∑

i
(µ t

Σ
−1)iHi(x)+2 ∑

i< j
σ

i jHi j(x)+∑
i

σ
iiHii(x)

)
,

where Hi(x) = H1(xi) = xi and Hii(x) = H2(xi) = x2
i −1 for i = 1, . . . ,m, and Hi j =

H1(xi)H1(x j) = xix j for 1 ≤ i < j ≤ m. The likelihood of N(µ,Σ) with respect to
the standard Gaussian with density w(x) = (2π)−1/2 exp(−xtx/2) has exponent

− 1
2

µ
t
Σ
−1

µ− 1
2

Tr
(
Σ
−1)− m

2

+∑
i
(µ t

Σ
−1)iHi(x)−∑

i< j
σ

i jHi j(x)−∑
i
(σ ii−1)

Hii(x)
2

Vice-versa, given I−Θ ∈ S+m and θ ∈ Rn, then



Geometry of the Gaussian model 3

p(x;θi,θi j : i≤ j) =

exp

(
∑

i
θiHi(x)+∑

i< j
θi jHi j(x)+∑

i
θii

Hii(x)
2
−ψ(θi,θi j : i≤ j)

)
w(x) (1)

is the multivariate Gaussian density with Σ−1µ = θ = (θi : i = 1, . . . ,n), I−Σ−1 =
Θ with upper entries (θi j : i < j), and cumulant generating function

ψ(θi,θi j : i≤ j) =
1
2

θ
t(I−Θ)−1

θ − 1
2

Tr(Θ)− 1
2

logdet(I−Θ). (2)

In Eq. (1) the Gaussian model is presented as an exponential family with natural
parameters (θi : i= 1, . . . ,m;θi j : 1≤ i≤ j≤m) in the open convex set Rn×(I+S−m)
and w-orthogonal sufficient statistics. From (∂/∂θi)θ = ei, (∂/∂θi j)Θ = E i j and
Eq. (2) we can compute the first derivatives of the cumulant generating function ψ ,
that is the expected values of the sufficient statistics,

∂

∂θi
ψ = θ

t(I−Θ)−1ei = µi, (3)

∂

∂θi j
ψ =

1
2

Tr
(
(I−Θ)−1E i j)+ 1

2
θ

t(I−Θ)−1E i j(I−Θ)−1
θ

= σi j +µiµ j, i < j, (4)
∂

∂θii
ψ =

1
2

Tr
(
(I−Θ)−1E ii)+ 1

2
θ

t(I−Θ)−1E ii(I−Θ)−1
θ − 1

2

=
1
2
(
σii +µ

2
i −1

)
. (5)

The second derivatives, that is the covariances of the sufficient statistics, are

∂ 2

∂θi∂θ j
ψ = et

j(I−Θ)−1ei,
∂ 2

∂θi∂θ jh
ψ = θ

t(I−Θ)−1E jk(I−Θ)−1ei,

and

∂ 2

∂θi j∂θhk
ψ =

1
2

Tr
(
(I−Θ)−1Ehk(I−Θ)−1E i j

)
+

1
2

θ
t(I−Θ)−1Ehk(I−Θ)−1E i j(I−Θ)−1

θ

+
1
2

θ
t(I−Θ)−1E i j(I−Θ)−1Ehk(I−Θ)−1

θ .

This formulæ are to be compared with the expression of the Riemannian metric in
[7]. Yo Sheena [6] has a different parameterization in which the Fisher matrix is
diagonal.

We have used up to now standard change-of-parameter computations. We turn
now to exploit specific properties of the Hermite system. Let us write U(x;θ ,Θ) =
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∑i θiHi(x)+∑i< j θi jHi j(x)+∑i θii
Hii(x)

2 . The vector space generated by the suffi-
cient statistics Span

(
Uθ ,Θ : θ ,Θ

)
is the space of polynomials up to degree 2 in the

variables X1, . . . ,Xn that are centered with respect to w. In the geometrical picture,
it is the tangent space at w of the Gaussian model, while the tangent space at pθ ,Θ

is generated by the Fisher’s scores, i.e. the partial derivatives of the log-density, see
the discussion in [5]. We have

∂U(x;θ ,Θ)/∂xi =

∂

∂xi

(
θiH1(xi)+H1(xi)∑

j<i
θ jiH1(x j)+

1
2

θiiH2(xi)+H1(xi)∑
i< j

θi jH1(x j)

)
= θi +∑

j<i
θ jiH1(x j)+θiiH1(xi)+∑

i< j
θi jH1(x j)

and ∂ 2U(x;θ ,Θ)/∂xi∂x j = θi j. In matrix form, the basic relation between parame-
ters of the Gaussian model and Hermite polynomials is

∇xU(x;θ ,Θ) = θ +Θx, Hessx U(x;θ ,Θ) =Θ . (6)

Let us write the expectation parameters as ηi = Eθ ,Θ [Hi], ηi j = Eθ ,Θ [Hi j], i < j,
ηii = Eθ ,Θ [Hi j]/2, and E0,I = E. We can compute the η’s as moments, instead of
derivatives of the cumulant generating function. From Hi = δi1,

ηi = E
[
HieUθ ,Θ−ψ(θ ,Θ)

]
= E

[
∂ieUθ ,Θ−ψ(θ ,Θ)

]
= E

[
(θi +∑

j
θi jH j)eUθ ,Θ−ψ(θ ,Θ)

]
= θi +∑

j
θi jη j,

or η = θ +Θη , η = (I−Θ)−1θ , cf. Eq. (3). For ηi j we need

∂i∂ jeUθ ,Θ−ψ(θ ,Θ) =

(
θi j +(θi +∑

h
θihHh)(θ j +∑

k
θ jkHk)

)
eUθ ,Θ−ψ(θ ,Θ)

=

(
θi j +θiθ j +∑

h
(θiθ jh +θ jθih)Hh +∑

h,k
θikθ jhHhHk

)
eUθ ,Θ−ψ(θ ,Θ).

From Hi j = δ iδ j1, Eθ ,Θ [HhHk] = ηhk if h 6= k, Eθ ,Θ

[
H2

h

]
= 2ηhh +1, we obtain

ηi j = θi j + θiθ j +∑
h
(θiθ jh + θ jθih)ηh + ∑

h6=k
θikθ jhηhk +∑

h
θihθ jh(2ηhh + 1),

to be compared with Eqs. (4) and (5).
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3 Optimization

Let f : Rm → R be a continuous bounded function, with maximum at a point
m ∈ Rm. We define the relaxed function F(θ ,Θ) = Eθ ,Θ [ f ] = E

[
f eUθ ,Θ−ψ(θ ,Θ)

]
.

Then F(θ ,Θ) ≤ f (m) and for each sequence (θ n,Θn), n = 1,2, . . . , such that
limn→∞(I−Θn)

−1 = limn→∞ Σn = 0 and limn→∞(I−Θn)
−1θ n = limn→∞ µn = m,

we have limn→∞ F(θ n,Θn) = f (m). This remark has been used in Optimization
when the function f is a black box that is when no analytic expression is known,
but the function can be computed at each point x, see for example [2]. In fact, the
gradient of the relaxed function has components

∂

∂θi
F = Covθ ,Θ ( f ,Hi) ,

∂

∂θi j
F = Covθ ,Θ ( f ,Hi j) , i < j,

∂

∂θii
F =

1
2

Covθ ,Θ ( f ,Hii) ,

so that the direction of steepest ascent at (θ ,Θ) can be learned from a sample of
eUθ ,Θ−φ(θ ,Θ)v for example from sample covariances. This method does not require
any smoothness in the original function and it is expected to have a better robust-
ness vs local maxima than the ordinary gradient search because mean values of the
function f are used. A reduction of dimensionality is obtained by considering sub-
models, for example Θ diagonal.

We note that the gradient of the relaxed function is related with the f , ∇ f , Hess f
as follows. We have Covθ ,Θ ( f ,Hi) = Eθ ,Θ [ f Hi]−Eθ ,Θ [ f ]Eθ ,Θ [Hi] and

Eθ ,Θ [ f Hi] = E
[
Hi f eUθ ,Θ−ψ(θ ,Θ)

]
= E

[
∂i

(
f eUθ ,Θ−ψ(θ ,Θ)

)]
= E

[
(∂i f + f ∂iU)eUθ ,Θ−ψ(θ ,Θ)

]
= Eθ ,Θ [∂i f ]+θiEθ ,Θ [ f ]+∑

j
θi jEθ ,Θ [ f H j] .

If H1 is the vector with components H1, . . . ,Hm,

Eθ ,Θ [ f H1] = Eθ ,Θ

[
(I−Θ)−1

∇ f
]
+Eθ ,Θ [ f ] (I−Θ)−1

θ ,

so that ∇θ F = Eθ ,Θ

[
(I−Θ)−1∇ f

]
= Eµ,Σ [Σ∇ f ].

In a similar way, Covθ ,Θ ( f ,Hi j) = Eθ ,Θ [ f Hi j]−Eθ ,Θ [ f ]Eθ ,Θ [Hi j] and

Eθ ,Θ [ f Hi j] = E
[
Hi j f eUθ ,Θ−ψ(θ ,Θ)

]
= E

[
∂i∂ j

(
f eUθ ,Θ−ψ(θ ,Θ)

)]
= E

[
∂i

[
(∂ j f + f ∂ jUθ ,Θ )eUθ ,Θ−ψ(θ ,Θ)

]]
= Eθ ,Θ

[
∂i∂ j f +∂i f ∂ jUθ ,Θ +∂ j f ∂iUθ ,Θ + f ∂i∂ jUθ ,Θ +∂iUθ ,Θ ∂ jUθ ,Θ

]
.
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Now we can substitute in the equation above ∂iUθ ,Θ = θi + ∑h θihHh, ∂ jUθ ,Θ =
θ j +∑h θ jhHh, ∂i∂ jUθ ,Θ = θi j and

∂iUθ ,Θ ∂ jUθ ,Θ = (θi +∑
h

θihHh)(θ j +∑
k

θikHk)

= θiθ j +∑
h
(θiθ jh +θ jθih)Hh +∑

h,k
θihθ jkHhHk

= θiθ j +∑
h
(θiθ jh +θ jθih)Hh +2 ∑

h<k
θihθ jkHhk +∑

h
θihθ jh(Hhh +1),

to obtain the required relation. We leave the rest of the computation to the reader.

4 Conclusions

We have presented the Gaussian model of Eq. (1) in a way that connects the pa-
rameter space with the sample space, see Eq. (6). This formalism has a number of
advantages: 1. The geometry of the vector bundles of the model is connected with
statistical objects e.g., estimating functions. 2. The use of Hermite polynomials as
sufficient statistics allows to use properties of this class of orthogonal polynomials.
3. The splitting of the log density into simple effects and interactions is reduced to
computations on multivariate Hermite polynomials. 4. The form of the exponential
family in Eq. (1) suggests a possible generalization to a higher order expansion e.g.,
up to order 4, that is generalized Gaussian distributions.
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